Comparison between Subfield and Straightforward Attacks on NTRU
نویسندگان
چکیده
Recently in two independent papers, Albrecht, Bai and Ducas and Cheon, Jeong and Lee presented two very similar attacks, that allow to break NTRU with larger parameters and GGH Multinear Map without zero encodings. They proposed an algorithm for recovering the NTRU secret key given the public key which apply for large NTRU modulus, in particular to Fully Homomorphic Encryption schemes based on NTRU. Hopefully, these attacks do not endanger the security of the NTRUENCRYPT scheme, but shed new light on the hardness of this problem. The basic idea of both attacks relies on decreasing the dimension of the NTRU lattice using the multiplication matrix by the norm (resp. trace) of the public key in some subfield instead of the public key itself. Since the dimension of the subfield is smaller, the dimension of the lattice decreases, and lattice reduction algorithm will perform better. Here, we revisit the attacks on NTRU and propose another variant that is simpler and outperforms both of these attacks in practice. It allows to break several concrete instances of YASHE, a NTRU-based FHE scheme, but it is not as efficient as the hybrid method of Howgrave-Graham on concrete parameters of NTRU. Instead of using the norm and trace, we propose to use the multiplication by the public key in some subring and show that this choice leads to better attacks. We can then show that for power of two cyclotomic fields, the time complexity is polynomial when q = 2Ω( √ n log log n). Finally, we show that, under heuristics, straightforward lattice reduction is even more efficient, allowing to extend this result to fields without non-trivial subfields, such as NTRU Prime. We insist that the improvement on the analysis applies even for relatively small modulus ; though if the secret is sparse, it may not be the fastest attack. We also derive a tight estimation of security for (Ring-)LWE and NTRU assumptions.
منابع مشابه
Cryptanalysis of Middle Lattice on the Overstretched NTRU Problem for General Modulus Polynomial
The overstretched NTRU problem, which is the NTRU problem with super-polynomial size q in n, is one of the most important candidates for higher level cryptography. Unfortunately, Albrecht et al. in Crypto 2016 and Cheon et al. in ANTS 2016 proposed so-called subfield attacks which demonstrate that the overstretched NTRU problems with power-of-two cyclotomic modulus are not secure enough with gi...
متن کاملRevisiting Lattice Attacks on Overstretched NTRU Parameters
In 2016, Albrecht, Bai and Ducas and independently Cheon, Jeong and Lee presented very similar attacks to break the NTRU cryptosystem with larger modulus than in the NTRUEncrypt standard. They allow to recover the secret key given the public key of Fully Homomorphic Encryption schemes based on NTRU ideas. Hopefully, these attacks do not endanger the security of the NTRUEncrypt, but shed new lig...
متن کاملA Subfield Lattice Attack on Overstretched NTRU Assumptions - Cryptanalysis of Some FHE and Graded Encoding Schemes
The subfield attack exploits the presence of a subfield to solve overstretched versions of the NTRU assumption: norming the public key h down to a subfield may lead to an easier lattice problem and any sufficiently good solution may be lifted to a short vector in the full NTRU-lattice. This approach was originally sketched in a paper of Gentry and Szydlo at Eurocrypt’02 and there also attribute...
متن کاملChoosing Parameters for the Subfield Lattice Attack against overstretched NTRU
Albrecht et al. [1] at Crypto 2016 and Cheon et al. [4] at ANTS 2016 independently presented a subfield attack on overstretched NTRU problem. Their idea is to map the public key down to the subfield (by norm and trace map respectively) and hence obtain a lattice of smaller dimension for which a lattice reduction algorithm is efficiently applicable. At Eurocrypt 2017, Kirchner and Fouque propose...
متن کاملNtru: a Public Key Cryptosystem
0. Introduction 1. Description of NTRU 1.1. Notation 1.2. Key Creation 1.3. Encryption 1.4. Decryption 1.5. Why Decryption Works 1.6. Parameter choices notation and a norm estimate 1.7. Sample spaces 1.8. A Decryption Criterion 2. Attributes and Advantages of NTRU 2.1. Theoretical Operating Speci cations 2.2. Comparison With Other PKCS's 3. Security Considerations 3.1. Security Analysis 3.2. Br...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016